

InGaSb p-Channel Self-Aligned FinFETs with 10 nm Fin-Width Using Sb-Compatible Digital Etch

W. Lu¹, I. P. Roh², D.-M. Geum², S.-H. Kim², J. D. Song², L. Kong¹, and J. A. del Alamo¹

Sponsors:

DTRA KIST Lam Research SRC ¹Microsystems Technology Laboratories, MIT ²Korea Institute of Science and Technology December 5, 2017

Outline

- Motivation
- Key technology: III-Sb-compatible digital etch
- InGaSb p-channel FinFET fabrication
- Electrical characteristics
- Conclusions

A Case for III-Sb

Properties of III-Sb:

- High μ_n
- High μ_p
- Strong strain effect
- E_g engineering
- Applications in photonics, etc.

III-Sb Transistor Research

Gu, IEDM 2011

Zhao, IEDM 2013

Vardi, IEDM 2015

III-Sb Transistor Research

Waldron, VLSI 2016

Zota, IEDM 2016

Vardi, EDL 2016

Zhou, VLSI 2016

III-Sb Transistor Research

InAs/AISb/GaSb HEMT B. Bennett, JVST '00

III-Sb Transistor Research

Nanowire Release Source Drain Vertically Stacked Nanowire

InGaSb p-SOI Nishi, VLSI '15

InGaSb p-FinFET Lu, IEDM '15

InAs/GaSb TFET Memišević, EDL '16

InGaSb p-MOSFET Nainani, IEDM '10

Challenges: III-Sb Digital Etch

```
W_F = 5 nm
```

D = 5 nm

D = 8 nm

[Vardi, IEDM 2017] [Lu, EDL, 2017]

Digital etch: key of sub-10 nm InGaAs transistors

Challenges: Ill-Sb Digital Etch

XSEM of InGaSb FinFET

[Lu, IEDM, 2015]
W_f limited by EBL and RIE

Challenges: III-Sb Digital Etch

XSEM of InGaSb FinFET

[Lu, IEDM, 2015]

- W_f limited by EBL and RIE
- Suffers from large off current

HCI Digital Etch on III-Sb

- Previous research: HCl cleans GaSb surface
- [Nainani, JAP 2011] GaSb MOSCAPs

HCI Digital Etch on III-Sb

• Previous research: HCl cleans GaSb surface

FinFETs: only mild improvement of off current

Issue with HCI Digital Etch

• HCl etches the InGaSb sidewall

After RIE 1% HCl 30s

Issue with HCI Digital Etch

• HCl etches the InGaSb sidewall

After RIE 1% HCl 30s

DI water 2 min

Water-based HCl problematic for III-Sb DE

Alcohol-based Digital Etch

After RIE

10% HCI:IPA 2 min

[Lu, EDL, 2017]

- Self-limiting process
- No damage on the sidewall

- r (III-Sb) ↓ after 3 cycles
- r (III-As) >> r (III-Sb)

Sb-compatible Digital Etch

- Oxidation of GaSb:
- •In air:
 - -Ga₂O₃, Sb₂O₃

[Liu, JVST B. 2002]

III-Sb-compatible Digital Etch

- Oxidation of GaSb:
- •In air:
 - -Ga₂O₃, Sb₂O₃

In strong oxidation agents:

 $-Ga_2O_3$, Sb_2O_3 , Sb_2O_5 (insoluble in aqueous acid/alkali) [Liu, JVST B. 2002]

DE = oxidation + dissolution, both critical for III-Sb!

III-Sb-compatible Digital Etch

Survey of digital etch combinations:

Best results: RT O₂ atmosphere + HCI:IPA

r (III-As) = r (III-Sb)

InGaSb FinFETs

- Channel $\mu_p = 1175 \text{ cm}^2/\text{V} \cdot \text{s}$
- Buffer/channel resistivity ~ 10⁹

InGaSb FinFET Process

- Ni Ohmic contact
- SiO₂ spacer
- Gate recess (dry + wet)
- Fin RIE
- Digital etch
- Al₂O₃/Al Gate stack
- Via + metal

Ohmic Contacts

Ni contacts, 350 °C RTA, 3 min

BCl₃/N₂ 13.5:5.5, 250°C [Lu, IEDM 2015]

BCl₃/Ar/SiCl₄ 3:11:0.4, 250°C This work

High-quality simultaneous InAs and GaSb etching

InGaSb FinFET Process

Finished devices

- 3.5 nm Al₂O₃ gate dielectric
- Final FGA anneal at 150 °C for 3 min

InGaSb FinFET Process

- Narrowest W_f = 10 nm
- Fin AR = 2.3

Electrical Characteristics

- S ~ 260 mV/dec
- $g_{m,max} = 160 \,\mu\text{S}/\mu\text{m}$
- Single fin device: current fluctuations

Electrical Characteristics

$$W_f = 10 \text{ nm}, L_g = 1 \mu \text{m}, N_f = 100$$

Electrical Characteristics

$$W_f = 10 \text{ nm}, L_a = 1 \mu \text{m}, N_f = 100$$

Significant improvement over 1st gen FinFETs

ON Resistance

ON Resistance

ON Resistance

 $R_f \text{ and } R_{SD} \sim 1/W_f$

 $W_f \downarrow \rightarrow better V_T roll-up$

1 DE cycle significantly improves off current

Device degrades after multiple DE cycles

3 cycles of DE

• Buffer is damaged after multiple DE cycles

AlGaSb

3 cycles of DE GaSb 0 AlGaSb

Exposure in air after fin etch

- Buffer is damaged after multiple DE cycles
 - AlGaSb is very reactive

Buffer leakage contributes substantially to off current

Benchmark

Normalized by conducting width

Benchmark

If normalized by footprint, $g_m = 704 \ \mu S/\mu m$ at $W_f = 10 \ nm$

Conclusions

- Studied sidewall cleaning of InGaSb FinFETs
 - III-Sb-compatible digital etch
 - Etching rate = 2 nm/cycle
 - Mitigation of surface leakage
- Demonstrated most scaled InGaSb p-channel FinFETs
 - Minimum $W_f = 10 \text{ nm}$
 - Record device performance
 - Improved subthreshold performance
- Face challenge: to improve turn-off characteristics